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Hyperelliptic Integrals and Multiple Hypergeometric Series 

By Jean-Francis Loiseau, Jean-Pierre Codaccioni, and Regis Caboz 

Abstract. We consider the complete hyperelliptic integral 

J 3(a) dx 

a (aa= ) (a a~-Pn (X) 

where a > 0 and 
n 

PW(x) = EkX, 
k=2 

with A2 > 0, [a,3] being the connected component of {xlPn(x) < a} containing the 
origin. 

Using a recent result concerning the Taylor expansion of the 6-Dirac function, we 
write J(a) as a power series of a parameter involving a and the Ak'S. 

We prove this series to be a sum of multiple hypergeometric series which reduces to 
a single term when the number of odd monomial terms in Pn is less than or equal to 
one. 

The region of convergence is then studied and a few particular cases are detailed. 

1. Introduction. Of fundamental importance in mechanics is the integral 

q dx 

(1) qto 22(E-U(x)) 

which represents for a one-dimensional conservative mechanical system the time 
necessary to go from the initial point qO to the current point on the q-axis, U(x) 
being the potential and E the total energy. 

Of particular interest is the case where U(O) = 0 and dU(O)/dx = 0, i.e., 
U(x) = W2Xw2 + Ui (x), which exhibits a harmonic (quadratic) term together with 
an anharmonic (superquadratic) part U1(x). This anharmonic potential may be 
modeled by a polynomial. 

The "complete" integral 
qrnax dx 

T(E) = q 2(E -Ux 

represents the period of the oscillations when the movement is bounded, qmin and 

qmax being functions of the energy E. 
In this paper we shall be dealing with the complete integral 

(2) J(a) = f dx 

()Va~- Pn() 
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FIGURE 1 

A typical case for Pn (x). 

(Separatrices are indicated by dotted lines) 

where a > O. Pn (x) is a polynomial of degree n, Pn (x) = Ekn= Ak with A2 > ?, 

and [al,,B] the connected component of fxlPn(x) < a} containing the origin. 

According to Carlson's definition [3], this integral is hyperelliptic as soon as 

n > 4. A few cases may be reduced by a suitable change of variable to complete 

elliptic integrals [10], [12]. 

To show the link with multiple hypergeometric series, we shall use a property of 

the Dirac-distribution on a smooth manifold, recently proved [1] and already used 

in the simple case Pn (x) = >2 X2 + An Xn [12]. 

Note that in this particular case, for n = 3, 4 or 6, J (a) can be directly integrated, 

even in the incomplete case (for a systematic review and a few references, see [12]). 

For the general case Pn(x), the incomplete case must be treated in a different way, 

which will be examined in a forthcoming paper. The present study is therefore 

devoted to the complete integral. 

2. Computation of J(a). Setting y2 (x, a) = a - Pn (x), the integral takes the 

form 

(3) J (a) = 
(a dx 

In the neighborhood of the origin, Pn(x) stays close to A2X 2, and since A2 > ?, 

there exists an interval containing the origin where Pn(x) > ?- 

A typical case is depicted in Figure 1 where, for the chosen value a, the curve 

y2 = a -Pn(x) has two bounded connected components and one unbounded. 
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We only deal with the [a(a), :(a)] interval of integration, but the following 
method could be used for [a'(a), 3'(a)], provided we perform a translation of axis, 
setting the local minimum of Pr (x) as the new origin. 

Since dy/da = 1/2y(x, a), J(a) may be written as 

J(a)=2j2 d dx, 

and since y(a, a) = y(,f, a) = 0, differentiation and integration commute, so that 

d /3(a) d p /(a) f+y(x,a) 
J(a) 2d|af y(x, a) dx = dA dx dy. 

a (a) a a(a) -y(x,a) 

If we denote by Da the compact connected component containing the origin of 
the domain, defined by z(x, y) y_2 + P (x) < a, we can write 

J(a) = da ff dxdy.* 

Using the two-dimensional Heaviside characteristic function of the manifold 

O~z a) 
1 if z<a, 
0 if z>a, 

the distribution 6(z - a) and its successive derivatives are defined by [8] 

6(z- a) = d O(z- a), 

d k 
I 6(k)(z - a) = (-l)kd k6(z-a), k= 1,2,.... 

dak 
We may then write 

(4) J(a) = /f6(z-a) dx dy 

(integration being performed on the whole (x,y) space). Setting now z(x,y) = 

zo (x, y) + z1 (x), with 

zo (X, y) = y2 + A2 X2, 

(i z(x;) = E AkXk, 

k=3 

a result by Caboz, Codaccioni and Constantinescu [1] shows that for every value 
of a for which there exists a compact subset of R2 containing the {zo(x, y) = a} 
manifold and a compact component of the {z(x, y) = a} manifold with no critical 

point (gradz 0 O ), we can write 
oo 

(6) 6(z -a) = k klzlkU(k) (zo-a). 
k=O 

(Here, the condition grad z :$ 0 excludes any separatrix.) 
* Note that from a mechanical point of view, and aside from a scale-factor, the double integral is 

nothing but the so-called action-integral taken over one cycle of the oscillation in time in the theory 
of action-angle variables (see, e.g., H. Goldstein, Classical Mechanics, Addison-Wesley, 1980). 
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The change of coordinates 

{ x = -tcosp, 
(7) 2 

y= Vf/0sin W 

with Jacobian 1/2JX-, applied in (6), yields 

00 K (\32 n/2 1k 

k 
(a) = 

k!" 
[3 ( 

2} cos (Op + 
...+ 

An ( 
.) 

cosn J 

x 6 (k) (zo-a) 
dz ' 

and using the generalized binomial formula [13], we get 

J( 1 ) V 3. -.knf ( / (k) (Z -a) dz? 

Pn=k 

x COSan cos ; dp, 
0 

where 

(8) Pn= k3+4k4 + +rkn 

( ) l (7~~~~On = 3k3 + 4k4 + + nkn. 

We shall use in the following also 

(9) Tn = (n-2Pn = k3 + 2k4 + + (n-2)kni 

which has the same parity as Un. From the classical results [10] 

27 (0 if (n is odd, 
(10) cosrn 4p d=p 2V/rF5 n2 + 1/2)+ '~ 2~fF~an/ 1/2)if Un is even 

(Un/2)! 
(F being the Gamma function) and 

(1 1 ( /2 6 (k)(zo-a)dzo = (1)k (an/2)! a rn/2-k 

I 
a dO _) 

(Un/2 - k)! AOrn/2 

we deduce 
00 Ak3 ... A( kF(!r(/2 + 1/2) arn/2 

J (a) : (-)- 3 3 n 
2 k3k .k. kn! (Tn / 2)! A Orn/2 

Pn=k 
On even 

and setting 

0 O if an is odd, 

(12) Ak3,... kn- F(Un/2 + 1/2) if i 

and 

a(p-2)/2 
(13) UPp =-AP Ap/2 

2 
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the integral takes the following form (owing to (8), (9), (12), (13)): 

(14) J(a) = k3,...,k,3 Yn 

Problems of convergence will be studied in Section 4. 

This form, however, is not yet the most convenient one for our purpose, which 
is to prove the hypergeometric character of the series and to determine its region 
of convergence. Some notational difficulties will arise, which we try to avoid by the 
following conventions: 

o Among the kj, we denote by kj those for which j is an odd integer (of 
course, when j is specified, as in k5, we simply write k5). 

fO if j is an even integer, 
o j=S 

' 11 if j is an odd integer. 

o I = E(n/2) is the integer part of n/2 (it is also the number of odd mono- 
mials in Pn(x)). 

o A is the greatest even integer < I (A is just I - l) 
o E = {3,5,7,. ... ,21 + 1}. 

Ak3,...,kn is nonzero only when Un is even (this is the case when all the kj are 
even numbers, or when an even number of kj are odd). We can then split the 
summation in (14) and obtain J(a) in a new form where the ,sj appear squared 
when j is odd. 

We set 

n 

(15) On = Ad(1 + Ej)jkjX 
i=3 

n 

(16) O3n = E(1 + Ej)(j -2)kj 
3=3 

(17) 'Y (17) an ~~~~~(2k3)!k4! [(1 + En)knl! 

(an and f3n are, respectively, Un (kI -- 2kj) and Tn(kI -- 2kj); it is easy to see that 
they are even integers), and we note that 

Un (kc -- 2k3 + 1) = an +1 Tn(kj -- 2/c3 + 1) = #n ++j -2. 

Putting 

(18) Xl~k3 n - (l3)k3Xl424(2)k5 . . . (/ 
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we finally obtain 

J~~a) = ir fscj F(an/2 +1/2) 1c3 
n J 

\a) 2o 
In 

(,3n /2)! 
13 

k3,. , k, 

+ z I, l Pi2 
pairs k3 k (2kil -1)(2ki2 + 1) 

{ ? ,i2}EE 

r(an+?l+j2 +_1 ) 

X- (:+i 1+7,2-4)! 3 n 

(19) +quadruplets k3 (2kil + 1) i(2k4 + 1) 

f(Qtn+1+ +?4 + 
)k 

tYn 

A-tuples k(3 n(2kil + 1) ... (2k, + 1) 

x 2(n ~j~ ) k3n'1>, 
OCn +?, + +i,\ - 2A 

) 
l,.. X(,In+tl+"+i-2)! 13nJ 

J(a) is the sum of 1 + C2 + C14 + + Cl (n - 2)-tuple series in the variables 

/13, /t4, [,5... X (Cn are the binomial coefficients.) 
We shall now show that these series are hypergeometric. A straightforward 

generalization of Horn's definition (see [6, p. 223] and [14, p. 53]) states that a 
series 

(20) E Am .mnxll x mn 

is an n-tuple hypergeometric series if the quotients 

(21) fi (Ml, . Mn) = 
A Ml, 

+,.................,M 
j El{,-,M 

I . , nil 
Aml ,...,m+ {n 

are rational functions of the variables M1, . . . ,mn. The series is said to be ho- 
mogeneous if numerator and denominator of fj have the same degree for every 

J. 

It is easy, though rather tedious, to see that for each series in Eq. (19), numerator 
and denominator have the same degree: j/2 if j is an even integer, j if j is odd. 
Thus, (19) is a sum of homogeneous (n - 2)-tuple hypergeometric series. 

3. Particular Cases. Upon using the Pochhammer symbol 

(22) (a) ) + 1) (a+k- 1) (a)k 

and the classical addition formula and Gauss's multiplication theorem [9] 

(23) (al)k+l = (a)k(a + k)1, 
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(24) (Cm)mk = m mk I) 
j=1k 

the coefficients in J(a) can be transformed to exhibit explicitly the hypergeometric 
nature of the series, at least in some particular cases. 

(1) Single superquadratic term Pn(x) = A2x2 + AnXn [12], [4]: 

-1 3 n- 1 

J(a) = n/2Fn/2- [ 2 In (n even), 

(25)~~~~~~~~ n - 2 ' n -2 * - n2 (25) F1 3 2n- 11 
2n' 2n'' 2n 

= n~n- 1 ;Vn (n odd), 
Vf[ 1 2 n-2 1 

Ln -2'n - 2 'n-2' 2 

where 

(26) ~~~(n/2 )n/2 An =- 2/ aa (n(2-22 (26) vn =((n -2)/2)(n-2)/2 Pn - 
- ()/2(a)(n)2 

and pFq is the Gaussian generalized hypergeometric series [6], [7], [14]. 

(2) Two even superquadratic terms Pn(x) = A2X2 + AmXm + AnXn (m, n even 

integers): 

J(a) = 
' 

1+mkm 3+mkm n-1+mkm 1 
(27) x 

Adkn/2Fn/2m 
L 2 + (m-2)km 4 + (m-2)km n-2 + (m-2)km" j 

km n-2 n-2 n-2 2 

X (1/m)km (3/m)km ... ((m - 1)/nm)km > km 

(2/(m - 2))km (4/(m - 2))km ... ((m - 2)/(m- 2))km km! 

The structure of the series (27) shows that it is a formal generalization of Appell 
series [6], [7], [14]. Note that in (27), because of the symmetry of On = mkm + nkn, 
m and n having the same parity, we could exchange m and n and express J(a) as 
a summation over the index kn with a "coefficient" m/2Fm/2-1[.L. (m +- n); vm]. 

Although it might be possible, also in other cases, to show explicitly the hy- 
pergeometric structure with pFq coefficients, the general form (19) is still useful, 
especially in convergence problems. For two superquadratic terms, we have the 

following simplest cases: 

P4(x) = A2x2 + A3x3 + A4X4 

1 F(3k3 + 2k4 + 2 ) -2)k3 (28) J~~a)= A2 (2k3)!k4! (k3 + k4)! (60)3 j4 ; 
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P5(x) = A2X2 + A3X3 + A5x5, 

J (a) 
1 3 

Fz (2k3)!(2k6)! (k3 + 5k5+) (12) )k3 (,2)k5 
2 k! (2 k +1(k3?k + 5)! 0+3 5 

(29) 1kk 

+/13/15 ~~ 1 F(3k3?+5k5?+ ) (1,2)k3 /2k 
(2 k3?+1)! (2 k5?+1)! (k3?+3 k5?+2)! 3 

P6(z) = >2X2 + A4X4 + A6X6 (which is (27) with m = 4 and n = 6), 

1 F(2k4?+3k6? ) k4 k6 
(30) J(a) = - 

Ek4,k6 k4!k6! (k4 + 2k6)! /4 16 

Note that (29) is the simplest case where J(a) appears like a sum of multiple 
hypergeometric series, the number of odd monomials in Pn(x) being larger than 
one. 

When the number of odd monomials in Pn (x) is less than or equal to one, the 
summation reduces to a single hypergeometric series. Furthermore, every Aj which 
is zero reduces the multiplicity of the series. 

4. Convergence Problems. For Gaussian simple hypergeometric series, such 
as (25), convergence is insured when Ijvnj < 1, but as soon as Pn(x) involves more 
than one superquadratic term, we have to use Horn's theorem on convergence of 
multiple hypergeometric series [6], [7] and its generalization [14]. This theorem 
states that for general series like those occurring in (19), the associated radii of 
convergence (numbers (j E R+ such that the series converges when jxjj < Kj, 
j E {1,12,... ,rn}) lie in the "absolute space" (R+)n on a hypersurface (Z). When 
the series is homogeneous, (E) may be defined as the hypersurface whose parametric 
equations are 

(31) (j q$(m1,.. . 

with (mt,... ., mn) = limn -00 f (min,... .,mnr) being finite for every j because 
of homogeneity. (See Eq. (21).) 

4n(0,0, I) I 

4 (0,1,0) 

q41,0,0) 

FIGURE 2 
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Figure 2 shows (Z) in the case of three superquadratic terms AmXmx ApxP and 

Anxn in P (x) . 
Computation of 'j in the general case is quite tedious, but it can be shown that 

every series occurring in (19) has the same (Z)-hypersurface of convergence. 

When there are only two superquadratic terms, (Z) reduces to a curve in (R+)2, 

which we specify in the particular cases (28), (29) and (30). (The case (29) was 

already treated in [4].) The following table summarizes these results. 

parametric equation region of convergence (S) 
particular series of the curve (2)in (L +2 

(28) 64 
/ 4(1? t)I 

converges when (3+2t)3 4 | 

2 ~~~~~~~t(1?t) 
(P32 ,1P41) ( 6 4=(3?2t)2 

is in (S) (S)27 

k3 

(29) 
4(1?3t) 

converges when (3+5t)| 

(3? 5t)5 3125 , 
is in (S) k5 108 S 2 

k5 ~~~~~~~0 
3 

(30) (62t 

(IP41 71p61) 
O + ; 2t)2 D 

27 

It is easy to show that if we use the "natural" hypergeometric argument wp 

(defined in (26)) instead of supin the (IIpI, IVqI)-plane (R+)2, (E) always joins the 

extremities of the diagonal of the unit-square (or unit-hyperoctant in (R+)n-2). 

As a final remark we add that, probably, the series (14) (or (19)) may often be 

analytically continued, as is already the case for the simple example (25) when n is 

even (see [12]; in this case, J(a) may be defined for sun (or vn) -* -oc. 

Appendix: The Elliptic Case. When Pn (x) involves a single superquadratic 

term of degree 3, 4, or 6, we observed in the introduction that Eq. (2) can be 
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transformed into a complete elliptic integral and straightforwardly integrated [12], 
[2], giving the following results (2F, [ , , 1; k2] 2 K(k) where K is the complete 
elliptic integral of the first kind): 

(32) d = (1 - k2 + k4)1/42F [1 X;1; k2], 
J> +/a -A2x2 - 3x3 - /X 

IK }2= i -+ cos = 
13 23A3 2 

Sin8? co8=-2 23 3 2 ~ 

//3 Va - x - A4x4 

(33) - ,4(1 4k2 4k4"/4sFi [2i;o1; k2l if A4>0, 

_~~~ 3 

Xs(1? +k2)'/22F1 [2, 2; 1; ik2] if A4 < O. 

V3 - 2[1- 3a )/; -11 fA4>O 

1A2 

1 A21 

(34) |~ ( 1 - 4k2 +4k 4)1/4 2 F -;1; k2 if A4 > ?, 

| 1-[ + k 1(4) [2]' 2k if A4 < 0, 
1 A 

1 =(- 1 +- V4)h-2 ]) 2 - 1 - (1- v4) '> 

A4 A 

/ - A2x2 - -2 if if < ?, 

(34) L(1 - 16k2 ? 16k4)2/42 [- 1;k2 i 4)3 /2 

/3 {1A~~~2 (v)/[1+t') + (1 - th 4)1/2]1 fA6>0 

11/ 

sin 2eiri( 2k)13k-2 k4 1 22)1k-k) 
-34 si ~ (1 -16k + 16k4)1/42 = (1- k2?fk4)3/2 

_ 27 A6 2 
_a = - AV 3 a 



HYPERELLIPTIC INTEGRALS AND MULTIPLE HYPERGEOMETRIC SERIES 511 

(Formulae equivalent to (34) are given by Lakshmanan and Prabhakaran [11]. 
Equation (25) of the present paper gives much simpler results. The values of a 

and 3 in "hypergeometric form" are derived from formulae [12] obtained by the 
Lagrange-Biirmann Theorem; see also [5].) 

(35) Ly 2_A 3 = j+2F1 [x1 5 27 A2 

a 13}1 5 3 27 [3 ;T A3a2 24 3 27 A3 
: 

J = +S A 
F1 -, -; -; -->a .2- -; -; _. _. a; 

(36) JV/ A 2 A6 4 = 2F1 [ 33';21; 4i4a] 

: 42 1 v[X [4 4 ; )2] 

A2~~~~~ 
(37)|6 ) = /2F, [-' 6- 1; _ 4 Aa 

41 41 52 

2 2~~~ 

(Identification of (35), (36), (37), respectively, with (32), (33), (34) is carried out in 
[12], using transformation relations for Gaussian hypergeometric functions estab- 
lished by Goursat [9]. Integrals (35) to (37) may also be identified with Legendre 
functions [2].) 

(38) P3 - dx_ Ad z = +P-1/6 ( - A3 ) 

A~2-A~x -4'4X 
1 

(39) /a- 22 - 44 = C (1 + 8 -.a 

(40) 1a /vfa-\2x2 _ r6a6 = VA- 2 2 

where 1%a(x) is the solution of Legendre's differential equation 

(1-X ) d2 -2xdj-+a(a+1)f =0 . 
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